您的位置 >首页 > 星座 > 新闻正文

圆周率小知识

圆周率小知识


1.关于 圆周率的小知识

圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x。

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.

公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π

会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.

公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<;π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.

15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.

1579年法国韦达发现了关系式 。首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.

1650年瓦里斯把π表示成元穷乘积的形式

稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.

1671年,苏格兰数学家格列哥里发现了

1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.

1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为

1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.

1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.

本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.

人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……

2.关于 圆周率的小知识

1、π(读作“派”)是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表示圆周率了。

2、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<;π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

3、为什么要继续计算π?第一,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。第二,数学家把π算的那么长,是想研究π的小数是否有规律。比如,π值从第700100位小数起,连续出现7个3,即3333333,从第3204765位开始,又连续出现7个3。现在大家就会问,π只具备这样一种特殊性质吗?不是的。

3.谁有有关圆周率的小知识

自古以来,不知有多少数学家为求圆周率π的数值绞尽了脑汁。魏晋时,我国数学家刘徽用割圆术计算出圆的内接正192边形的面积,得到圆周率值为3.14。后来,他又计算出圆内接正3072边形的面积,得到更精确的圆周率值为3.1416。我国南北朝的科学家祖冲之精密地失算出圆周率的值在3.1415926和3.1415927之间。微积分理论建立以后,圆周率的计算进入了一个新的境界。到1947后,电子计算机问世前夕,圆周率的值已计算到了小数点后808位。电子计算机发明以后,用电子计算机计算的圆周率小数位数以惊人的速度增长。1989后,圆周率的值已经计算到小数点后10亿多位。

希望采纳

4.谁有有关圆周率的小知识

自古以来,不知有多少数学家为求圆周率π的数值绞尽了脑汁.魏晋时,我国数学家刘徽用割圆术计算出圆的内接正192边形的面积,得到圆周率值为3.14.后来,他又计算出圆内接正3072边形的面积,得到更精确的圆周率值为3.1416.我国南北朝的科学家祖冲之精密地失算出圆周率的值在3.1415926和3.1415927之间.微积分理论建立以后,圆周率的计算进入了一个新的境界.到1947后,电子计算机问世前夕,圆周率的值已计算到了小数点后808位.电子计算机发明以后,用电子计算机计算的圆周率小数位数以惊人的速度增长.1989后,圆周率的值已经计算到小数点后10亿多位.。

5.有关圆周率的知识

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926。

6.关于圆周率的知识有哪些

手写体写的π圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键。分析学上,π 可定义为是最小的 x > 0 使得 sin(x) = 0。

常用的 π 近以值包括疏率“22/7”及密率“355/113”。这两项均由祖冲之给出。

π 约等于(精确到小数点后第100位)

3.14159 26535 89793 23846 26433 83279 50288 41971

69399 37510 58209 74944 59230 78164 06286 20899

86280 34825 34211 70680

π 的计算及历史

由于 π 的超越性,所以只能以近似值的方法计算 π。对于一般应用 3.14 或 22/7 已足够,但工程学常利用 3.1416 (5个有效数字) 或 3.14159 (6个有效数字)。至于密率 355/113 则是易于记忆,精确至7位有效数字的分数。

实验时期

中国古籍云:‘周三径一’,意即 π=3。公元前17世纪的埃及古籍《阿美斯纸草书》(Ahmes,又称“阿梅斯草片文书”;为英国人Henry Rhind于1858年发现,因此还称“Rhind草片文书”)是世界上最早给出圆周率近似值,为 256/81 (3 + 1/9 + 1/27 + 1/81) 或 3.160。

至阿基米得之前,π值之测定倚靠实物测量。

几何法时期?D?D反复割圆

阿基米得用几何方法得出圆周率是介乎 3又1/7 与 3又10/71 之间。

公元263年,刘徽用“割圆术”给出 π=3.14014 并限出 3.14 是个很好的近似值?D?D“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”;其中有求极限的思想。

公元466年,祖冲之用割圆术算到小数点后7位精度,这一纪录在世界上保持了一千年之久。为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称祖率

分析法时期?D?D无穷级数

这一时期人们开始摆脱利用割圆术的繁复计算,开始利用无穷级数或无穷连乘积求π。

Ludolph van Ceulen (circa,1600年) 计算出首 35 个小数字。他对此感到自豪,因而命人把它刻在自己的墓碑上。

Slovene 数学家Jurij Vega于1789年得出首 140 个小数字,其中有 137 个是正确的。这个世界纪录维持了五十年。他是利用了John Machin于1706年提出的数式。

所有以上的方法都不能快速算出 π。第一个快速算法由 Machin 提出:

其中 arctan(x) 可由泰勒级数算出。类似方去称为“类Machin算法”。

7.圆周率的小资料

圆周率是圆的周长和它的直径的比。这个比值是一个无限不循环小数,通常用希腊字母π来表示。

圆周率π的值是怎样计算出来的呢?

在半径为r的圆中,作一个内接正六边形(如图)。

这时,正六边形的边长等于圆的半径r,因此,正六边形的周长等于6r。如果把圆内接正六边形的周长看作圆的周长的近似值,然后把圆内接正六边形的周长与圆的直径的比看作圆的周长与圆直径的比,这样得到的圆周率是3,显然这是不精确的。

如果把圆内接正六边形的边数加倍,可以得到圆内接正十二边形;再加倍,可以得到圆内接正二十四边形……不难看出,当圆内接正多边形的边数不断地成倍增加时,它们的周长就越来越接近于圆的周长,也就是说它们的周长与圆的直径的比值,也越来越接近于圆的周长与圆的直径的比值。根据计算,得到下列数字:

这样,我们就得到了一种计算圆周率π的近似值的方法。

早在一千七百多年前,我国古代数学家刘徽曾用割圆术求出圆周率是3.141024。继刘徽之后,我国古代数学家祖冲之在推求圆周率的研究方面,又有了重要发展。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;另一个是朒(nǜ)数(即不足的近似值),为3.1415926。圆周率的真值正好在盈朒两数之间。祖冲之还采用了两个分数值:一个是22/7(约等于3.14),称之为“约率”;另一个是355/113(约等于3.1415929),称之为“密率”。祖冲之求得的密率,比外国数学家求得这个值,早一千多年。

8.关于圆周率的知识有哪些

1777年法国科学家蒲丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。

这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为l(l

布丰本人证明了,这个概率是 p=2l/(πd) π为圆周率 利用这个公式可以用概率的方法得到圆周率的近似值。下面是一些资料 实验者 年代 投掷次数 相交次数 圆周率估计值 沃尔夫 1850 5000 2531 3.1596 史密斯 1855 3204 1219 3.1554 德摩根 1680 600 383 3.137 福克斯 1884 1030 489 3.1595 拉泽里尼 1901 3408 1808 3.1415929 赖纳 1925 2520 859 3.1795 布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。

像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method)。蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。

这种方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。 法国数学家布丰(1707-1788)最早设计了投针试验。

并于1777年给出了针与平行线相交的概率的计算公式P=2L/πd(其中L是针的长度,d是平行线间的距离,π是圆周率)。 由于它与π有关,于是人们想到利用投针试验来估计圆周率的值。

此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关。 值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。

投针试验——计算π的最为稀奇的方法之一 计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·蒲丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的. 蒲丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值. 公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929——准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的。

9.关于圆周率的知识

▲什么是圆周率? 圆周率是一个常数,是代表圆周和直径的比例。

它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。

▲什么是π? π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。

但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。 ▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。

他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。

亚洲 中国: 魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。

虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。

印度: 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。

欧洲 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。

10.圆周率的知识200字

▲什麽是圆周率?圆周率是一个常数,是代表圆周和直径的比例。

它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。

▲什麽是π?π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。

但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。▲圆周率的发展史在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。

他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。

亚洲中国:魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。

虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。

印度:约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。

欧洲斐波那契算出圆周率约为3.1418。韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537他还是第一个以无限乘积叙述圆周率的人。

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。华理斯在1655年求出一道公式π/2=2*2*4*4*6*6*8*8。

../3*3*5*5*7*7*9*9。

欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。

π与电脑的关系在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。

这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。

科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。

在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。

高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。

目前为止,π的值己被算至小数点后51,000,000,000个位。为什麽要继续计算π其实,即使是要求最高、最准确的计算,也用不著这麽多的小数位,那麽,为什麽人们还要不断地努力去计算圆周率呢?这是因为,用这个方法就可以测试出电脑的毛病。

如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。

就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。▲π的年表圆周率的发展年代 求证者 内容古代 中国周髀算经 周一径三圆周率 = 3西方圣经元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形的面积2.圆面积与以直径为长的正方形面积之比为11:143. 圆的周长与直径之比小於3 1/7 ,大於3 10/71三世纪 刘徽中国 用割圆术得圆周率=3.1416称为"徽率"五世纪 祖冲之中国 1. 3.14159262. 约率 = 22/73. 密率 = 355/1131596年 鲁道尔夫荷兰 正确计萛得p的35 位数字 1579年 韦达法国 "韦达公式"以级数无限项乘积表示p1600年 威廉.奥托兰特英国 用p/σ表示圆周率 π是希腊文圆周的第一个字母σ是希腊文直径的第一个字母1655年 渥里斯英国 开创利用无穷级数求p的先例 1706年 马淇英国 "马淇公式"计算出p的100 位数字 1706年 琼斯英国 首先用p表示圆周率 1789年 乔治.威加英国 准确计萛p至126 位 1841年 鲁德福特英国 准确计萛p至152 位 1847年 克劳森英国 准确计萛p至248 位 1873年 威廉.谢克斯英国 准确计萛p至527 位 1948年 费格森和雷恩奇英国 美国 准确计萛p至808 位 1949年 赖脱威逊美国 用计算机将p计算到2034位 现代 用电子计算机可将p计算到亿位 ▲背诵π历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。

目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42。

为您推荐的相关新闻